Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Nat Commun ; 15(1): 3284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627386

RESUMO

The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called 'FLip' mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.


Assuntos
Anticorpos Monoclonais , Complicações Pós-Operatórias , Humanos , Mutação , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Clin Exp Immunol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642547

RESUMO

Obesity and type 2 diabetes (DM) are risk factors for severe COVID-19 outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with obesity and DM in Bangladesh. In this cross-sectional study, SARS-CoV-2-specific antibody and T cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, obesity was associated with decreased neutralising antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8+ T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T cell responses after adjustment for obesity and other confounders. Obesity is associated with lower neutralising antibody levels and higher T cell responses to SARS-CoV-2 post COVID-19 recovery, while antibody or T cell responses remain unaltered in DM.

3.
Nat Commun ; 15(1): 2734, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548763

RESUMO

Under pressure from neutralising antibodies induced by vaccination or infection the SARS-CoV-2 spike gene has become a hotspot for evolutionary change, leading to the failure of all mAbs developed for clinical use. Most potent antibodies bind to the receptor binding domain which has become heavily mutated. Here we study responses to a conserved epitope in sub-domain-1 (SD1) of spike which have become more prominent because of mutational escape from antibodies directed to the receptor binding domain. Some SD1 reactive mAbs show potent and broad neutralization of SARS-CoV-2 variants. We structurally map the dominant SD1 epitope and provide a mechanism of action by blocking interaction with ACE2. Mutations in SD1 have not been sustained to date, but one, E554K, leads to escape from mAbs. This mutation has now emerged in several sublineages including BA.2.86, reflecting selection pressure on the virus exerted by the increasing prominence of the anti-SD1 response.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Sindactilia , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
4.
Vaccine ; 42(7): 1506-1511, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38355318

RESUMO

Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose but have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global 'Prevent, Detect and Respond' strategy.


Assuntos
Medicamentos Falsificados , Vacinas , Humanos , Testes de Diagnóstico Rápido , Vacinas contra COVID-19 , Saúde Pública
5.
BMJ Open Diabetes Res Care ; 12(1)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272537

RESUMO

INTRODUCTION: 4.2 million individuals in the UK have type 2 diabetes, a known risk factor for dementia and mild cognitive impairment (MCI). Diabetes treatment may modify this association, but existing evidence is conflicting. We therefore aimed to assess the association between metformin therapy and risk of incident all-cause dementia or MCI compared with other oral glucose-lowering therapies (GLTs). RESEARCH DESIGN AND METHODS: We conducted an observational cohort study using the Clinical Practice Research Datalink among UK adults diagnosed with diabetes at ≥40 years between 1990 and 2019. We used an active comparator new user design to compare risks of dementia and MCI among individuals initially prescribed metformin versus an alternative oral GLT using Cox proportional hazards regression controlling for sociodemographic, lifestyle and clinical confounders. We assessed for interaction by age and sex. Sensitivity analyses included an as-treated analysis to mitigate potential exposure misclassification. RESULTS: We included 211 396 individuals (median age 63 years; 42.8% female), of whom 179 333 (84.8%) initiated on metformin therapy. Over median follow-up of 5.4 years, metformin use was associated with a lower risk of dementia (adjusted HR (aHR) 0.86 (95% CI 0.79 to 0.94)) and MCI (aHR 0.92 (95% CI 0.86 to 0.99)). Metformin users aged under 80 years had a lower dementia risk (aHR 0.77 (95% CI 0.68 to 0.85)), which was not observed for those aged ≥80 years (aHR 0.95 (95% CI 0.87 to 1.05)). There was no interaction with sex. The as-treated analysis showed a reduced effect size compared with the main analysis (aHR 0.90 (95% CI 0.83 to 0.98)). CONCLUSIONS: Metformin use was associated with lower risks of incident dementia and MCI compared with alternative GLT among UK adults with diabetes. While our findings are consistent with a neuroprotective effect of metformin against dementia, further research is needed to reduce risks of confounding by indication and assess causality.


Assuntos
Demência , Diabetes Mellitus Tipo 2 , Metformina , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Metformina/efeitos adversos , Estudos de Coortes , Hipoglicemiantes/efeitos adversos , Glucose , Demência/epidemiologia , Demência/prevenção & controle , Atenção Primária à Saúde , Reino Unido/epidemiologia
6.
Nature ; 625(7993): 189-194, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057663

RESUMO

In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Pseudouridina , RNA Mensageiro , Animais , Humanos , Camundongos , Vacina BNT162/efeitos adversos , Vacina BNT162/genética , Vacina BNT162/imunologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pseudouridina/análogos & derivados , Pseudouridina/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas
7.
J Hepatol ; 80(1): 109-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863203

RESUMO

BACKGROUND & AIMS: Comparative assessments of immunogenicity following different COVID-19 vaccines in patients with distinct liver diseases are lacking. SARS-CoV-2-specific T-cell and antibody responses were evaluated longitudinally after one to three vaccine doses, with long-term follow-up for COVID-19-related clinical outcomes. METHODS: A total of 849 participants (355 with cirrhosis, 74 with autoimmune hepatitis [AIH], 36 with vascular liver disease [VLD], 257 liver transplant recipients [LTRs] and 127 healthy controls [HCs]) were recruited from four countries. Standardised immune assays were performed pre and post three vaccine doses (V1-3). RESULTS: In the total cohort, there were incremental increases in antibody titres after each vaccine dose (p <0.0001). Factors associated with reduced antibody responses were age and LT, whereas heterologous vaccination, prior COVID-19 and mRNA platforms were associated with greater responses. Although antibody titres decreased between post-V2 and pre-V3 (p = 0.012), patients with AIH, VLD, and cirrhosis had equivalent antibody responses to HCs post-V3. LTRs had lower and more heterogenous antibody titres than other groups, including post-V3 where 9% had no detectable antibodies; this was heavily influenced by intensity of immunosuppression. Vaccination increased T-cell IFNγ responses in all groups except LTRs. Patients with liver disease had lower functional antibody responses against nine Omicron subvariants and reduced T-cell responses to Omicron BA.1-specific peptides compared to wild-type. 122 cases of breakthrough COVID-19 were reported of which 5/122 (4%) were severe. Of the severe cases, 4/5 (80%) occurred in LTRs and 2/5 (40%) had no serological response post-V2. CONCLUSION: After three COVID-19 vaccines, patients with liver disease generally develop robust antibody and T-cell responses to vaccination and have mild COVID-19. However, LTRs have sustained no/low antibody titres and appear most vulnerable to severe disease. IMPACT AND IMPLICATIONS: Standardised assessments of the immune response to different COVID-19 vaccines in patients with liver disease are lacking. We performed antibody and T-cell assays at multiple timepoints following up to three vaccine doses in a large cohort of patients with a range of liver conditions. Overall, the three most widely available vaccine platforms were immunogenic and appeared to protect against severe breakthrough COVID-19. This will provide reassurance to patients with chronic liver disease who were deemed at high risk of severe COVID-19 during the pre-vaccination era, however, liver transplant recipients had the lowest antibody titres and remained vulnerable to severe breakthrough infection. We also characterise the immune response to multiple SARS-CoV-2 variants and describe the interaction between disease type, severity, and vaccine platform. These insights may prove useful in the event of future viral infections which also require rapid vaccine development and delivery to patients with liver disease.


Assuntos
COVID-19 , Doenças do Sistema Digestório , Hepatite Autoimune , Hepatopatias , Transplante de Fígado , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Cirrose Hepática , Anticorpos , Imunidade , Anticorpos Antivirais , Transplantados
8.
Nat Rev Microbiol ; 22(3): 155-169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37794173

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/epidemiologia , Melioidose/prevenção & controle , Exposição Ambiental , Organização Mundial da Saúde , Genômica
9.
iScience ; 26(12): 108500, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38089581

RESUMO

SARS-CoV-2 infections in children are generally asymptomatic or mild and rarely progress to severe disease and hospitalization. Why this is so remains unclear. Here we explore the potential for protection due to pre-existing cross-reactive seasonal coronavirus antibodies and compare the rate of antibody decline for nucleocapsid and spike protein in serum and oral fluid against SARS-CoV-2 within the pediatric population. No differences in seasonal coronaviruses antibody concentrations were found at baseline between cases and controls, suggesting no protective effect from pre-existing immunity against seasonal coronaviruses. Antibodies against seasonal betacoronaviruses were boosted in response to SARS-CoV-2 infection. In serum, anti-nucleocapsid antibodies fell below the threshold of positivity more quickly than anti-spike protein antibodies. These findings add to our understanding of protection against infection with SARS-CoV-2 within the pediatric population, which is important when considering pediatric SARS-CoV-2 immunization policies.

10.
Front Immunol ; 14: 1294113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146371

RESUMO

Introduction: The environmental bacterium Burkholderia pseudomallei causes the often fatal and massively underreported infectious disease melioidosis. Antigens inducing protective immunity in experimental models have recently been identified and serodiagnostic tools have been improved. However, further elucidation of the antigenic repertoire of B. pseudomallei during human infection for diagnostic and vaccine purposes is required. The adaptation of B. pseudomallei to very different habitats is reflected by a huge genome and a selective transcriptional response to a variety of conditions. We, therefore, hypothesized that exposure of B. pseudomallei to culture conditions mimicking habitats encountered in the human host might unravel novel antigens that are recognized by melioidosis patients. Methods and results: In this study, B. pseudomallei was exposed to various stress and growth conditions, including anaerobiosis, acid stress, oxidative stress, iron starvation and osmotic stress. Immunogenic proteins were identified by probing two-dimensional Western blots of B. pseudomallei intracellular and extracellular protein extracts with sera from melioidosis patients and controls and subsequent MALDI-TOF MS. Among B. pseudomallei specific immunogenic signals, 90 % (55/61) of extracellular immunogenic proteins were identified by acid, osmotic or oxidative stress. A total of 84 % (44/52) of intracellular antigens originated from the stationary growth phase, acidic, oxidative and anaerobic conditions. The majority of the extracellular and intracellular protein antigens were identified in only one of the various stress conditions. Sixty-three immunoreactive proteins and an additional 38 candidates from a literature screening were heterologously expressed and subjected to dot blot analysis using melioidosis sera and controls. Our experiments confirmed melioidosis-specific signals in 58 of our immunoproteome candidates. These include 15 antigens with average signal ratios (melioidosis:controls) greater than 10 and another 26 with average ratios greater than 5, including new promising serodiagnostic candidates with a very high signal-to-noise ratio. Conclusion: Our study shows that a comprehensive B. pseudomallei immunoproteomics approach, using conditions which are likely to be encountered during infection, can identify novel antibody targets previously unrecognized in human melioidosis.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Formação de Anticorpos , Antígenos de Bactérias , Imunoglobulinas
11.
Wellcome Open Res ; 8: 413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969481

RESUMO

Background: Melioidosis is a bacterial infection which kills an estimated 89,000 people per year in tropical and sub-tropical regions, chiefly affecting the poorest. Diabetes is the primary risk factor, conferring a 12-fold increase in risk. Despite limited funding compared to other neglected tropical diseases, melioidosis vaccine development has generated several candidates for clinical development. CPS-CRM 197/Hcp1 is a promising vaccine candidate developed at the University of Nevada, Reno which is due to enter a Phase I clinical trial in Oxford, UK in 2024. As we move closer to the possibility of field trials of a melioidosis vaccine, it is critical to work in parallel to understand perceptions toward a vaccine among those living where melioidosis rates are high. Reasons for vaccine acceptance versus hesitancy are complex, and include perceived risk of the target disease, concern about side effects, and above all trust in government, scientists, the pharmaceutical industry and other authorities. Methods: We will carry out a qualitative study in Ubon Ratchathani, Thailand, an endemic region for melioidosis, as groundwork for a potential future melioidosis vaccine efficacy study, and in the longer-term vaccine introduction. This study seeks to explore knowledge and attitudes in three main areas; 1) melioidosis disease, 2) vaccines, and 3) participation in clinical vaccine trials. In-depth interviews and focus group discussions will take place in five participant groups of different risks and exposure to melioidosis. Purposive, convenience sampling will be used, also snowball sampling to reach some participant groups. Sample size will be based on participant's experience, to inform the line of enquiries of study, or until data saturation, expecting 66-90 participants across all groups. Discussion: The findings of this study will be written up and published in an open access journal, and will be valuable to inform future design of clinical trials as well as engagement and communications associated with future vaccine rollout.

12.
Front Immunol ; 14: 1248630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942333

RESUMO

Introduction: The key to understanding the COVID-19 correlates of protection is assessing vaccine-induced immunity in different demographic groups. Young people are at a lower risk of COVID-19 mortality, females are at a lower risk than males, and females often generate stronger immune responses to vaccination. Methods: We studied immune responses to two doses of BNT162b2 Pfizer COVID-19 vaccine in an adolescent cohort (n = 34, ages 12-16), an age group previously shown to elicit significantly greater immune responses to the same vaccine than young adults. Adolescents were studied with the aim of comparing their response to BNT162b2 to that of adults; and to assess the impacts of other factors such as sex, ongoing SARS-CoV-2 infection in schools, and prior exposure to endemic coronaviruses that circulate at high levels in young people. At the same time, we were able to evaluate immune responses to the co-administered live attenuated influenza vaccine. Blood samples from 34 adolescents taken before and after vaccination with COVID-19 and influenza vaccines were assayed for SARS-CoV-2-specific IgG and neutralising antibodies and cellular immunity specific for SARS-CoV-2 and endemic betacoronaviruses. The IgG targeting influenza lineages contained in the influenza vaccine were also assessed. Results: Robust neutralising responses were identified in previously infected adolescents after one dose, and two doses were required in infection-naïve adolescents. As previously demonstrated, total IgG responses to SARS-CoV-2 Spike were significantly higher among vaccinated adolescents than among adults (aged 32-52) who received the BNT162b2 vaccine (comparing infection-naïve, 49,696 vs. 33,339; p = 0.03; comparing SARS-CoV-2 previously infected, 743,691 vs. 269,985; p <0.0001) by the MSD v-plex assay. There was no evidence of a stronger vaccine-induced immunity in females compared than in males. Discussion: These findings may result from the introduction of novel mRNA vaccination platforms, generating patterns of immunity divergent from established trends and providing new insights into what might be protective following COVID-19 vaccination.


Assuntos
COVID-19 , Vacinas contra Influenza , Feminino , Masculino , Adulto Jovem , Adolescente , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinas Atenuadas , Anticorpos Antivirais , Imunidade Celular , Imunoglobulina G , Reino Unido/epidemiologia
13.
BMJ Med ; 2(1): e000468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027416

RESUMO

The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.

14.
Vaccine ; 41(47): 6960-6968, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37865599

RESUMO

Preventing, detecting, and responding to substandard and falsified vaccines is of critical importance for ensuring the safety, efficacy, and public trust in vaccines. This is of heightened importance in context of public health crisis, such as the COVID-19 pandemic, in which extreme world-wide shortages of vaccines provided a fertile ground for exploitation by falsifiers. Here, a proof-of-concept study explored the feasibility of using a handheld Spatially Offset Raman Spectroscopy (SORS) device to authenticate COVID-19 vaccines through rapid analysis of unopened vaccine vials. The results show that SORS can verify the chemical identity of dominant excipients non-invasively through vaccine vial walls. The ability of SORS to identify potentially falsified COVID-19 vaccines was demonstrated by measurement of surrogates for falsified vaccines contained in vaccine vials. In all cases studied, the SORS technique was able to differentiate between surrogate samples from the genuine COVISHIELD™ vaccine. The genuine vaccines tested included samples from six batches across two manufacturing sites to account for any potential variations between batches or manufacturing sites. Batch and manufacturing site variations were insignificant. In conjunction with existing security features, for example on labels and packaging, SORS provided an intrinsic molecular fingerprint of the dominant excipients of the vaccines. The technique could be extended to other COVID-19 and non-COVID-19 vaccines, as well as other liquid medicines. As handheld and portable SORS devices are commercially available and widely used for other purposes, such as airport security, they are rapidly deployable non-invasive screening tools for vaccine authentication.


Assuntos
COVID-19 , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Vacinas contra COVID-19 , Excipientes , Pandemias , COVID-19/prevenção & controle
15.
mBio ; 14(5): e0121223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37655880

RESUMO

IMPORTANCE: Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough.


Assuntos
Infecções Irruptivas , Vacinas , Humanos , Estudos de Casos e Controles , Anticorpos , Linfócitos T CD8-Positivos , SARS-CoV-2 , Linfócitos T CD4-Positivos , Anticorpos Antivirais , Anticorpos Neutralizantes
16.
Front Immunol ; 14: 1248658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711627

RESUMO

Introduction: Family studies of antiviral immunity provide an opportunity to assess virus-specific immunity in infected and highly exposed individuals, as well as to examine the dynamics of viral infection within families. Transmission of SARS-CoV-2 between family members represented a major route for viral spread during the early stages of the pandemic, due to the nature of SARS-CoV-2 transmission through close contacts. Methods: Here, humoral and cellular immunity is explored in 264 SARS-CoV-2 infected, exposed or unexposed individuals from 81 families in the United Kingdom sampled in the winter of 2020 before widespread vaccination and infection. Results: We describe robust cellular and humoral immunity into COVID-19 convalescence, albeit with marked heterogeneity between families and between individuals. T-cell response magnitude is associated with male sex and older age by multiple linear regression. SARS-CoV-2-specific T-cell responses in seronegative individuals are widespread, particularly in adults and in individuals exposed to SARS-CoV-2 through an infected family member. The magnitude of this response is associated with the number of seropositive family members, with a greater number of seropositive individuals within a family leading to stronger T-cell immunity in seronegative individuals. Discussion: These results support a model whereby exposure to SARS-CoV-2 promotes T-cell immunity in the absence of an antibody response. The source of these seronegative T-cell responses to SARS-CoV-2 has been suggested as cross-reactive immunity to endemic coronaviruses that is expanded upon SARS-CoV-2 exposure. However, in this study, no association between HCoV-specific immunity and seronegative T-cell immunity to SARS-CoV-2 is identified, suggesting that de novo T-cell immunity may be generated in seronegative SARS-CoV-2 exposed individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Masculino , Imunidade Celular , Antivirais , Família
17.
Nat Commun ; 14(1): 5065, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604803

RESUMO

Pronounced immune escape by the SARS-CoV-2 Omicron variant has resulted in many individuals possessing hybrid immunity, generated through a combination of vaccination and infection. Concerns have been raised that omicron breakthrough infections in triple-vaccinated individuals result in poor induction of omicron-specific immunity, and that prior SARS-CoV-2 infection is associated with immune dampening. Taking a broad and comprehensive approach, we characterize mucosal and blood immunity to spike and non-spike antigens following BA.1/BA.2 infections in triple mRNA-vaccinated individuals, with and without prior SARS-CoV-2 infection. We find that most individuals increase BA.1/BA.2/BA.5-specific neutralizing antibodies following infection, but confirm that the magnitude of increase and post-omicron titres are higher in the infection-naive. In contrast, significant increases in nasal responses, including neutralizing activity against BA.5 spike, are seen regardless of infection history. Spike-specific T cells increase only in infection-naive vaccinees; however, post-omicron T cell responses are significantly higher in the previously-infected, who display a maximally induced response with a highly cytotoxic CD8+ phenotype following their 3rd mRNA vaccine dose. Responses to non-spike antigens increase significantly regardless of prior infection status. These findings suggest that hybrid immunity induced by omicron breakthrough infections is characterized by significant immune enhancement that can help protect against future omicron variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/classificação , Vacinas contra COVID-19/administração & dosagem , Imunidade , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes , Imunoglobulina A , Linfócitos T/imunologia , Imunidade nas Mucosas , Masculino , Feminino , Adulto
18.
Nat Med ; 29(7): 1760-1774, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414897

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml-1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , ChAdOx1 nCoV-19 , Vacinação , Anticorpos Antivirais
19.
iScience ; 26(8): 107234, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520720

RESUMO

NK cells are endowed with immunological memory to a range of pathogens but the development of NK cell memory in bacterial infections remains elusive. Here, we establish an assay inducing memory-like NK cell response to Burkholderia pseudomallei, the causative agent of the severe bacterial disease called melioidosis, and explore NK cell memory in a melioidosis patient cohort. We show that NK cells require bacteria-primed monocytes to acquire memory-like properties, demonstrated by bacteria-specific responses, features that strongly associate with CD160 expression. Induction of this memory-like NK cell is partly dependent on CD160 and IL-12R. Importantly, CD160 expression identifies memory-like NK cells in a cohort of recovered melioidosis patients with heightened responses maintained at least 3 months post hospital admission and reduced numbers of this cell population independently correlate with recurrent melioidosis. These newly identified memory-like NK cells are a promising target for future vaccine design and for monitoring protection against infection.

20.
Nat Commun ; 14(1): 3334, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286554

RESUMO

COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Imunoterapia , Mutação , Anticorpos Neutralizantes , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...